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Abstract. We give an analvtical description of the locus of the two-gap elliptic potertials
associated with the corresponding flow of the Calogero-Moser system. We start with the
description of Treibich—Verdier two-gap elliptic potentials. The explicit formulae for the covers,
wavefunctions and Lamé polynomials are derived, together with a new Lax representation for the
particle dynamics on the locus. We then consider more general potentials within the Weierstrass
reduction theory of theta functions to lower genera, The reduction conditions in the moduli
space of the genus-2 algebraic curves are given. This is a subvariety of the Humbert surface,
which can be singled out by the condition of the vanishing of some theta constants.

1. Introduction

The Calogero-Moser model, whose complete integrability was shown a number of years
ago (cf [22]), continues to attract more and more attention. This model has a rich algebraic-
geometrical structure: its flows are connected with the pole dynamics of elliptic solutions of
completely integrable partial differential equations [1], the Lax representation for the model
depends through elliptic functions on the spectral parameter [20], and only the integration
in terms of zeros of theta functions for the model is known [20]. The system permits a
relativistic generalization, which is also completely integrable [23).

The classical Poisson r-matrix structure for the elliptic Calogero—Moser model was
described very recently [7,24]. The r-matrix found appears to be of linear dynamical type,
i.e. dependent on the dynamical variables. The classical Poisson structure for the relativistic
galvanization of the Calogero-Moser model is described only in the soliton case with a
quadratic r-matrix of dynamical type [2]. The separaied variables for these systems remain
an unsolved problem besides the case of a small number of particles (see, for example, [8]).

The quantum Calogero-Moser problem also has a rich algebraic structure [13]. It is
remarkable that the solutions of the quantum problem are isomorphic to the solutions of the
Knizhnik—Zamolodchikov equations which are now understood to play an important roie in
the theory of quantum integrable models [26].

Because the Calogero-Moser model describes the pole dynamics for the elhptlc solutions
of the Kadomtsev—Petviashvili-type equations [1], its elliptic case becomes the classically
known Lamé potentials of the Schrodinger equation. Although this paper is devoted
to the investigation of elliptic potentials of the one-dimensional Schridinger equation,
we emphasize the importance of such potentials for different problems: the finite-gap
multidimensional spectral problem [30], the Wess—Zumino—Witten model on the torus [12]
and others. .
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All the results given below can be generalized to higher genera, but we shall restrict
ourselves to the investigation of the first non-trivial case of genus-2 to give the more
complete formulae. Throughout the paper we have used computer algebra systems
(Mathematica [31] and Maple [11]) to derive and simplify the formulae.

The paper is organized as follows. In section 2 we discuss the linear r-matrix algebra
for the Calogero-Moser system and define its restriction to the locus associated with the
Kdv dynamics. In section 3 we describe the two-gap Lamé and Treibich—Verdier potentials
[27, 28] for which we find explicitly the covers over the tori, derive the wavefunctions
of the associated Schridinger equations and Lamé polynomials. We also give a new Lax
representation for the dynamics of particles on the locus in terms of 2 x 2 matrices. We show
in section 4 that Treibich—Verdier potentials are special cases of elliptic potentials. Using
the classical reduction theory of Riemann theta functions to lower genera (see, for example,
[4, 5, 18]), we give necessary and sufficient conditions under which the two-gap potenttal
is elliptic. We formulate these conditions in terms of vanishing of some theta constants
which, in turn, are some subvarieties of Humbert surfaces (see, for examnple, [18, 29]), We
derive one of the two-gap Treibich—Verdier potentials from this theta functional approach
and give a new example of an elliptic potential. The paper is supported by two appendices
which contain the description of spectral characteristics of the Treibich—Verdier potentials
and all the necessary formulae to complete the theta functional computations mentioned in
the paper.

2. The Calogero-Moser system on the locus

The elliptic Calogero-Moser model is the system of N one-dimensional particles interacting
via a two-particle potential described by the Hamiltonian

H=Y 3+ p—x) (2.1)
i i

with g being the Welerstrass elliptic function [3] with the periods 2w, 2e and y;, X
(¢ =1,..., N} being canonical variables, {3, ¥;} = {xi, x;} =.0, {3, 5} = 8.

Let {X,} = {H;, E.}, be basis matrices, H; = (§;;8u),i = 1,...,N, Ey = E,, =
Gridm)nFmomn=1,...,N.

The Lax operator of the system L was found by Krichever and has the form {20]

L) =Y yHi+i)  Peko 2.2)
Fi @

where
= - A Gl oY
D, = Oz - ;1) D(x;u) = a(x)o‘(u)e

where o and ¢ are Weierstrass functions. The Hamiltonian flows of the system are generated
by Tr L”, in particular, Tr L? gives the Hamiltonian (2.1).

The Poisson structure of the system, as recently shown by Sklyanin [24] and Braden
and Suzuki [7], is described by a linear dynamical r-matrix algebra,

{L100), L2(v)} = [rialw, v), Li(@)] = [raa (e, 0), La(0)] 24)

where Ly = L® I, Ly =1Q® L, rp(u, v) =3, , ##*(u, 1) X, ® X,, is an N% x N? matrix
depending on the dynamical variables, and r21(u, v} = Pria(v, )P, P is the permutation:

(2.3)
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Px @ y = y ® x. The non-zero elements of the r-matrix are [7]
r (, v) = By (v — u)e? 7, v) = §Pa(v)
riu, v) = ¥ (u, v)8y : (2.5)
Y, v)=t@—u)+ @) —1W). '

The r-matrix satisfi¢s the dynamical Yang-Baxter equation,

[dia(x, ¥), dis(x, D]+ [dialx, ¥), dus(y, 2)] + [daz(z, ¥), dia(x, 2)1 + {Laly) @ d13(x, )}
—{L3(2) @ dialx, M} + [S13(x, 2, LoV = [S12(x, ), Ls (@1 =0 (2.6)
where the two other equations are obtained by cyclic permutations and in this context

dlz(x:.)’) = rlz(xs Y)®I= dB()’, Z) = [®r23(y’ Z)’ d[3(x, }’) = Z'u‘u r#‘”(x, y)XjTL(gI@XUa
and the S-matrix has the form

S13(x,2) = —Palx = 2)exp ¥ (x, )E_« @ H; @ Ey
S12(x. ¥y} = —Po(x — y)exp ¥ (x, ME_« ® E« ® H;.
We point out that the S-matrix (2.7) differs from that given by Sklyanin [24], where
a different representation for the aperator L was considered. Although the S-term already
appeared in [9], its significance became more evident after [24].
The equation _
det{Z — A =0 . 2.8

" defines the Krichever curve i.e. the algebraic curve Cy = (A, u) which is an N-sheeted
coverof atorus inm : Cy — G

2.7)

N—1 :
WS n@p =0 2.9)
=0
where r;{u) are elliptic functions. In particular, the first two of them are given by
ri(w) = —(3)p @) + X oy, @) = (3)p'@).
We consider the restriction of the third flow, Tr L? of the Calogero~Moser system to
the variety of stable points of the second flow, grad H—the locus Ly,

Ly= [(w, Y|y =0, Zso’(xz -x)=0, x5 %%, i j=1, N] CR10)
. i#f
It is shown in [1] that if the particles x; move aver the locus according to the equation
dx; N .
E—:—lZ_Z.p(x;mxj) i=1,...,N 2.11)
J=1j#i
then
N
wx)=2) pr—x@)+C (2.12)
=1 _

J .
is an elliptic solution of the Kdv equation u, = 6uu, — u,,, where C is a constant.

The geometry of the locus Ly was studied by Airault ¢ al [1] and others. They showed
that the locus is non-empty for positive triangle integers N, ie. for numbers of the form
N = g(g + 1)/2, where g is the number of gaps in the spectrum (or the genus of the
corresponding algebraic curve). The corresponding elliptic potential is the g-gap Lamé
potential. Recently Treibich and Verdier [28] found a new set of elliptic potentials of the
form (2.12) corresponding to non-triangle numbers of points on the locus Ly. In particular,
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for the points of the locus x; being the half-periods they found a family of elliptic potentials
of the form [27]

3
wxy =) gla+DpE—0)  geN 2.13)
=0
which are associated with the cover of degree N = %E?:o gi(g; + 1) over a torus. We
shall refer to these potentials as Treibich—Verdier potentials.

The curve (2.8) becomes hyperelliptic when restricted to the Ly [4]. Therefore one
expects to be able to write down a 2 x 2 Lax representation for the particle dynamics
on a locus. This is done below for the two-gap Lamé and Treibich—Verdier potentials.
Nevertheless the r-matrix formulation of the Calegero-Moser flows restricted to the locus
remains an unsolved problem.

3. Two-gap Treibich—Verdier potentials

3.1. The spectral characteristics of elliptic solitons

We shali start on the potential of the form (2.13). There exist exactly six two-gap Treibich—
Verdier potentials uy(x) associated with M-sheeted covering of the torus {(shown in table 1).

We note that the three last potentials are simply the two-order transformation (Gauss
transformation) of the first two potentials

pzlo, 10') = p@) + e+ o). 3.1
Therefore we shall refer to the first three potentials as primitive.

To describe the two gap Lamé potential 6 (x) and primitive Treibich—Verdier potentials
we have to

e exhibit the associated algebraic curve of genus-2;

5
C=w,2, w*=[]-2z) (3.2)
=1
o giveitscovers w : C; — Cpand @ : €y — C; over the tori C; = (9, @), (P)* =
4p° — gogp — g3 and C\ = (§, §), (F")* = 45° — 225 — &3, where the moduli 23, 23
are expressed in some way through the moduli g4, g3
e describe the two-gap locus Ly;
e write the solution W of the Schrédinger equation.

We can do all this by classical means (which modern computer algebra makes more effective)
following the work of Hermite [15] and Halphen [14].

Table 1. Six two-gap Treibich-Verdier potentials.

N up(x)

3 Epix) or 2p(x + w) + 20 (x + wn) + 20 (x + ws)

4 bp(x)+2plx+ew), i=1,23

5 6p)+2pkten+2pleta) i#F =123

6 OSpx)+bp(xta) i=1,23 ‘

8 Spx)+oplcta)+2pr+o)+2p(xtan) i2j#k
12 6p{x) + 6p(x + o)) + 6p(x + an) + 6p (x + w3)
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Let us consider the Lamé equation
2 |
[5? HZa,-(a,- + T} (x —x,—)jlllf(x: )y =z¥(x; u) (3.3)
i=1

where Y 1, %a,—(al + 1) = N is the degree of the cover.
We shall use the following generalization of the Hermite [15] and Halphen [14] ansatz
for the function W:
a1
Visuy =€ > Ak, u) Olx — x;, 1) (3.4)
i=1 j=0
where the function ®(x; 1) is the solution of (3.3} for n =1, a; = | is given by (2.3) and
Aj{z, M, u) are some functions of the spectral parameters z, A and #. Although the ansatz
is valid for any point of the locus £y we shall consider below only special points of the
form x; = @; or 0 found in [27] and listed previously in table 1. We shall refer to the Lamé
polynomials Ag(x) as the values of ¥(x; u) at valves of u corresponding to the edges of
the gaps u =g, k=1,...,5.
After substituting thc cxpansmns of ®(x, u) near the polc atx =0,

_ 2
] A n N (35)
and near x = @;
P (x + ;) = $lo;) (1 +ﬂ)—x + 1(2¢; +g.)(u))x2+---) (3.6)
' 2(e; — p(u)) 2

to (3.3) and equating the principal parts of the poles we come to an overdetermined linear
system for A;. The compatibility conditions give exactly two conditions

Pir,z. o)) =0 P2, z,p{u)) =0 (3.7
with polynomials P; of their arguments. By eliminating the variables z or g -from the
conditions (3.7) we obtain two equivalent realizations of the curve (3.2); eliminating the

variable z we obtain the first cover.
To find the second cover we use the fact that there exists the reduction formula

dz di
= = ‘ . 38
o= 68
with (&, {5) lying on the torus C; and the coordinate @ being a rational function of z,
On(z)
= - 39
Py_3(2) ' G9)

where Oy and Py_z are polynomials of orders N and N — 3, respectively.
The description of the spectral characteristics of the primitive Treibich—Verdier potentials
- is given in appendix A.

3.2. The dynamics on the locus

The complete description of the dynamics on the locus under the action of the Kdv flow
was given in [1] for the case of the two-gap Lamé potential by some tricky manipulations
with (2.10) and (2.11). It was shown that the dynamics are described by a foliation where
the basis and the bundle are, respectively, the elliptic curves C; and €; whose moduli are
inter-dependent. The paper also conjectured that the same foliation would occur for all
two-gap elliptic potentials.
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We show below how to compute the second curve C; for primitive Treibich—Verdier
potentials. The statement of [1] about the foliation can be proved by means of the Weierstrass
reduction theory {4, 18] in the next section. . .

To describe the dynamics over the locus we write the Jacobi inversion problem, for the
curve associated with elliptic potential

i ta #g m g
f ﬂ-;—f z—E’-:Zix-I-CI f—i+f ;z=--8ir+C2. (3.10)

w W 00 o0 W )
From the trace formulae [32] written for the elliptic potential in the form

N 5
== px—x)+5Y 7
=1 j=T

5 2
mima =3 o —x)p —x) —4Ng+5 Y zz — %(Zz,-)

i<f i< =t
we find in the vicinity of the point x; the decompositions
1
wilx; +8,8) = = + o{l) polx; +8,8) = —B(Zp(xj —x,-)) +o(g). {(3.11)
i#]

Therefore the equations (3.10) in which x = x; and integrals are hyperelliptic are
expressed in terms of elliptic functions in the following way:

1 (u1{x)) = plax; + bt +c) Q(u1(x7)) = Hldt + e) (3.12)

where P, are rational functions of the Nth degree, o and £ are Weierstrass elliptic
functions defined on the first and second tori, respectively; 4, b, ¢, d and ¢ are constants
that appear under reduction. By eliminating the variable g; from (3.11), we have an
algebraic equation of the Nth degree with respect to g and coefficients depending on £.

In particular, we have the following isospectral deformation of the potentials u3, #4 and
us. Let

N
X, =-3Y ply—x) i=1,....N.

ket
Then we have for N = 3, 4 and 5, respectively,
w3 1 4X° — 9g2X 4 9g3 + LHBIH) =0 (3.13)
4t 9K ~ )X — )X + de; — )% + 4(X + 6e)(H(Bit) —5) =0 (3.14)
us 1 OPs(X) +4(X —3e; — 9¢))(X — 3e; — 9e,)(8it) = 0 (3.15)

where the polynomial Ps(z) in (3.15) is given in table A3.

We note that the rational limit of the dynamics is the same for all the potentials. The
equations (3.13)-(3.15) give the integration of the corresponding Calogero-Moser flows
restricted to the locus.

‘We also note that (3.13) can be extracted from [1, p 144].

Let us construct the Lax representation for Calogero-Moser system, being restricted to
the locus. We choose the ansatz for such a representation in the form of 2 x 2 matrices

L) = [M(2), L))

_{V@ U@ _{ 0 1 (3.16)
L(Z}_(W(Z) —V(z)) M(Z)_(Q(z) )
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It follows from (3.16) that
V(z) = —1U(2) W) =—30@+U@0k). WR=2V@0E. @I

To construct the Lax representanon we have to define U/(z) and Q(z). Let us introduce
the following ansatz:

N
U@ =[Je-%x) 0@ =¢+26Eir) T (3.18)
i=1

where the polynomials are U(z) and the function ¢ = ¢£(z) is the expression for the second
cover taken from table A3 and the quantity ©(8it) is expressed in terms of X; from (3.13)~
(3.15) with the help of the Viett theorem.

The spectral curve has the form

35\ 2 :

Y2 = wi(z) (ﬁ) (3.19)
9z

where the polynomial w? is taken from table Al and & is the rational function taken from

table A3.
To find these Lax representations we use the Lax representatlon for the dynarmcs
associated with the curve C,, with

U@y =¢-$@in Q@) =¢ +2§(i) (3:20)

and raise this representation to the curve C; using the formulae for the cover.
For example, let us consider the particle dynamics assaciated w1th the two-gap Lamé
potential x5 which is described by the equations

Pt eis=0 P2 + 25 =0 #i +pn =0 T (321
and

i =—-12pn X3 =—12p; Xy = —12g3. (3.22)
The entries I/ and @ to the matrices L and M have the form

U@ = 4(z — Xz — Xa)(z — X3) (3.23)

Q) = 42° —~ 9g7 + 8X, X2 X5 + 273 ' (3.24)
where, in this case, X; = 3g;,. The curve det(L(z) — y/) = 0 has the form

= L (47 ~ 3g2)(z% ~ 3g2)(42° — 92z + 27g3). _ (3.25)

The Lax representations allow to construct the linear r-mamx algebra of the form (2.4)
which we will discuss elsewhere.

4. Elliptic potentials from the theta functional point of view

LetC ¢ = (w, 2) be hyperelliptic non—singuiar curve of genus g, define by the equation

2g+41

w® = ]—[(z ~2(Q;0, @)=z € C, 2 FZj “.n

and realized by means of the function z as a two-sheeted covering of the Riemann sphere
with branching points at 0y, ..., Qagt1, Q2pt2: 2(Qags2)} =X



1076 V Z Enoliskii and J C Eilbeck

Let us fix on (4.1} the homology basis (A, B) = (A;1,..., Az Br,.... Bg) on C, and
a canonically conjugated basis of holomorphic differentials v = (v, ..., v,) in such a way
that the Riemann matrix has the form

(355534”(1)

with the matrix 7 belonging to Siegel upper half space S, of degree g. Let us denote by

A = fof v the Abel map C, — J(C,), where J(Cy) is the Jacobian of the curve C,.
Let us determine the Riemann theta function #[£](z|7) on C# xS, with the characteristics

g g ... &
[8]=[s”]=|:ei’ si’:|
by the formula
Blel(z|T) = Z exprif{(m + 3&)1, (m+ L))+ 2{(m + L&), = + L")} 4.2)

meZt

where {-, -) means the Buclidean scalar product. For integer characteristics we have
é [g,,] (zlty =expri[3{e', e} + (&', 2) + (. )]0 (2 + 11" + Lzellr) . (4.3)

If & and s}’ are equal to O or 1, the characteristics [£] are the characteristics of the
half-periods. The theta function (4.2) is odd or even if [¢] is a half-period characteristic,
and we call the corresponding [£] odd or even.

The function (4.2) satisfies the two sets of functional equations (see, for example, [21]),
the transformational property

8[el(z + " + tn|v) = expri[~(n'z, 0} — 2{n, 2} — (&', ) + (¢", 0} ]LE]=IT)
4.4

where n', n" € Zf and the modular property, which describes the transformation of the
theta function under the action of the group Sp;.(Z).

The almost-pericdic function u{x) is called a finite-gap potential if the spectrum of the
Schridinger operator H = —ij' +u{x) is a union of the finite set of segments of a Lebesque
(double absolutely continuous) spectrum. Let us formulate the Its-Matveev theorem [16].

Theorem 1 (Its—Matveev theorem). The potential u(x) and the eigenfunction ¥(Q, x) of
the Schrédinger operator H = —32 + u(x) associated with the g-gap Lebesque spectrum
3 =[z122] U [z3, 24] U ... U [z2g41, 2], are expressed by the formula

2
u(x) = —Z%In 8{iUx -~ AD) - K[t} +C (4.5)

8(Ux + A(Q) ~ A(D) —Kl7) /. fQ
v, x)= - e ix 2.
(@.7) g(ilx — AD) - K|v) ( )
Here Q is a point on a hyperelliptic Riemann curve (4.1). £ is the differential of the second
kind with zero A-pericds which has a second-order pole at infinity with the principal part

£-2dE, where § is a local coordinate, U is the vector of B-periods of the differential Q, D
is a non-special divisor, K is the vector of Riemann constants.

(4.6)

o

The components U, i = 1,...,g of the winding vector U in (4.5) and (4.6) are
expressed in terms of the normalizing constants ¢;; of the holomorphic differentials and
projections of the branching points z1, ..., Z2;41 by the formulae

Uy==2ic; j=1,...,8. “.7)
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Further, we shall restrict ourselves the case of genus-2 curves.

Let us give the theta functional construction of the two-gap elliptic potentials. Following
section 2, we describe such points 7 € &, for which the function (4.5) is elliptic. For this
purpose we consider the Humbert surface Hy, A = N2, ie. the variety

Hy= ot + B+ vy +8(th —time) +2 =0 }
@ B,y 8,e€Z, A=p—4ay+ed)f. (4.8)

The quantity A is an invariant with respect to the action of the group Sps(Z) [18]. The
following theorem summarizes the Weierstrass reduction theory for the case of genus-2
algebraic curves (see, for example, [18, 14]).

Theorem 2 (Reduction theorem). Let Cy and C; be the curves of genus 2 and 1, which are
equipped by the homology basis (A1, Az; B, B2} and (A, B). The curve C, is an N-sheeted
covering of the torus C; if and only if the moduli of C; belong to the Humbert surface with
A = N? and the integer numbers o, 8, ¥, §, &, being expressed in terms of of the elements
of the integer matrix M, mapping the basis (A1, A3, By, Bs) into the basis (A, B)

Al My Mz

Az A ma Mz
M = M=

B ( B ) m3 My

B, M4 M4

are given by the following formulae:

O = 2y — M12042 Y = myniga—ma o
8 = myamq — MM & = m3iMa—mg Maz 4.9)
B = myim3g — m3yymyy — (Ma1May — Maymay) .

Moreover, there exists an element o € Sps(Z) and a point T € 5z such that

T 1/N
aor:(ll/lN o ) (4.10)

Under the conditions of the reduction theorem, the two-dimensional theta function is
reduced with the help of the addition theorem for theta functions of Nth order (see, for
example, [17]) to the finite sum of products of Jacobian theta functions with the moduli
Nty oand N,

Below we apply the Welersu'ass reduction theory to describe all elliptic genus-2
potentials.

Lemma 1. The function
f(x)=—za§1ne( +a ﬁ’ ( o/ %)) 4.11)

with arbm'ary (e, B) € J(C2), Ima' /o = Imz > 0 is an Nth order elhpnc function with
primitive periods 2w, 2¢' and ¢an be represented in the form

(x)-2Zg:)(x—xJ)+62p(x——xk} n+3m=N 4.12)
k=1

with x; belonging to the locus Ly or its closure.
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Proof. 1t follows from the transformational properties of theta functions that the function
(4.11) is a doubly periodical function on the torus C; with the primitive periods 20, 2o’
and T = w'/w. Let us caleulate the number of poles of the (4.11). To do this we consider

the function
o (s20+ap0my (77 1))

%3 (Nx /2w + No|T)

where 3 is a Jacobi theta function. The function f(x) is meromorphic on the torus Cy as
follows from the transformational properties of the theta function. Further, the denominator
(4.13) has exactly N zeros in Cj: '

2k+1
X =

glx) = (4.13)

w4+ w—2aw k=0,1,...,N-1.

Therefore, according to the Abel theorem, the numerator has exactly N zeros. These are
X1, ..., xy. To prove that the function (4.11) can be written in the form (4.12) we note
that the function (4.11) is a two-gap potential and therefore the corresponding wavefunction
can have a pole of no more than second order. Using the Schrédinger equation we find
the coefficients 2 and 6 in the decomposition (4.12). The proof that the points x, ..., xy
belong to the locus £y is carried out by substituting the ansatz (4.12) into the Schrédinger
equation and equating the principal parts of poles to zero.

Theorem 3 (Main theorem). The two-gap potential as defined by (4.5) is an elliptic function
of the Nth order if and only if

(i) Ca covers a torus Cy N-sheetedly;
(i) U U, =0.

Proof.
Sufficiency. Suppose the conditions of the theorem are fulfilled and for definiteness Uy = 0.
Then the function (4.5) is an elliptic function of order N according to the lemma.

Necessity. Let us suppose that the potential (4.5) is an elliptic function with periods
2w, 20, Imew/w’ > (. Then the following identities are valid due to the transformation
properties of the theta function (4.4):

U = r(n+p'tii+g'ts) 2Urw = r(m+p'tiz+q'tn) @.14)

200" = s(n'+pry1+g7y) 2U0 = s(m'+pria+q7a) '
where n,m, n',m', p,q, p', g € Z, r,s € N. Eliminating U;e’, Uje, i = 1,2 from (4.14)
we find that v belongs to the Humbert surface Ha, with

w=m'p' —mp, &= pg - pg

y=nq—nqg, e =nm" —mn ‘ 4.15)

B=np—m'g —(mg—n'p).

Calculating the invariant A, defined in (4.8), we find that A = N? with N =
np+mqg —m'q’ — n'p’. Therefore the assumption of the theorem leads to the conclusion
that C, covers a torus N-sheetedly. But in this case we can define a matrix M which maps
the homology basis on C3 to the homology basis on C;. Taking into account (4.9) we find

p -7
m=| 9 -4 np+mgq—m'qg' —n'p' =N (4.16)
=l 2 p+mg-m'q'—n'p' =N. -

-m m
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According to the reduction theorem there exists a transformation ¢ € Sps(Z) which maps
the matrix 7 to the form (4.10). Therefore we have in the new homology basis

p=N g=0 n=1 m=1{

. 4.17
p=0 g =0 # =0 m=—1. @17)

From {4.14) and (4.16) we conclude, that
2U|w=r U]Ct)r=SN‘5'11 U2=0 (418)

and the theorem is proved.

It follows from the conditions of the theorem that elliptic potentials are singled out from
finite-gap potentials by some subvariety in the Humbert variety. We shall call this variety
Ea-variety, Ep € Hy..

Let us derive the two-gap Lamé and Treibich-Verdier potentials from the réduction
technique of finite gap potentials to elliptic potential developed above.

Proposition 1 (Proposition on the Treibich—Verdier potentials). The only two-gap primitive
Lamé and Treibich—Verdier potentials are the three first elliptic two-gap elliptic potentials

from table 1.
)) heo @19

with [4] running through all the six odd characteristics. Let us considér the function

A5 i)

O(x) = 8[8) (—x-
2
At x = 0 this is a theta constant with the characteristic [§]. One can calculate, using (4.3),
that at x =  the characteristics become [§]+[J5], at x = &' the charteristic [§] turns into the
characteristic [8]+ [} )] and at x = w+a’ itis [§]+]{ Y ]|. Let us denote by (no, 71, 72, 73)
the coefficients in the decomposition uy = ng (X)+nip X +@)+Hr2@ (x+ o+ )+Hn3p (")
with 3_n; = N and #; = 2 or 6. Let the characteristic [8] run through all the odd
characteristics. Then for odd N we have

Proof. Let us consider the elliptic potential
@,
@

u(x) = —202 n8[3] (E%O‘(

z[— =zl

==z
282

2= |-

eiff1

i/

o
i

x=0 x=0 x=w o+’ (ng, 1y, H2, A03)
e el ) [ (no, 0, 2, n3)
01 Ldl O8] [Se] (n0,0,0,0)
o] 8] [%]  [6] (n0,0,0,0)
;1 1 8] [ (no, m1, 0, 73)
(] B 08  [ol (no, n1, 1, 0)
6] [ 088 [ (n0,0,0,0).

We see that the only possibilities are #(x) = 6 (x) or 2 (x+w1)+26 (x+w2)+260 (x+ws)
and u(x) = 6u(x) + 2 (x -+ o) + 20 (x + ).



1080 V Z Enolskii and J C Eilbeck

For even N we have

x=0 x=w x=0 x=o+& (ng,n,nn3)
o] Lol B [of] (n0, 0, 72, 0)
(9] D3] L6l [oa) (n0, 0, 72, 0)
o] oo] Ll [oi] (n0, 0,0, 1)
) ] [l [a) (0, 71, 0,0)
] B 6l (G (15, 71,0,0)
] G fel [l (0,0, 0, 3).

‘We see that the only possibilities in this case are u(x) = 6p(x) + 2p(x + ;). The
proposition is proved.

4.1. Elliptic subvarieties of Humbert surfaces

The components of the Humbert surface are described in terms of the vanishing of some
modular forms [18], more generally, the Humbert surface H, is described by some ideal in
the ring of modular forms [29]. Therefore it is natural to describe elliptic subsurfaces E,
of Ha, A = N? in terms of the vanishing of some theta constants.

Proposition 2 (Proposition on the elliptic points). Let the non-singular curve associated
with the two-gap potential cover a torus N-sheetedly. Let us fix such a homology basis that
the matrix t has the form (4.10) and belongs to the component H,. Then elliptic points in
Ha are separated by the condition

1N
(1/N 7 ))=° (4.20)

where [8] runs through ail the six odd characteristics and { = 1 or 2.

2:[4] (0

Proof. Tt follows immediately from the Rosenhain formulae for the normalizing constants
of the holomorphic differentialst and the expression (4.7) for the winding vectors. Assume
that the curve C; has the form w? = z(z — 1)(z ~ A )(Z — A2)(z — A3); then the normalizing
constants of the holomorphic differentials v; = (cnz+c)dz/w, i = 1, 2 have the form [19]
: o1le:]
2728(51118[8:210[8:3]
where [¢;] is an odd theta constant and [§],7 = 1,2 and 3 are such even theta constants
that [s;] = [8;1] + [8:2] + [dis].
Let us give a few examples for the condition (4.20). The simplest ones are at

N =27 p = 1,... because to simplify we can apply the the addition theorem for the
theta functions of the second order (see, for example, [21])

Ofe)(xl7)[8)(y|r) = Zg [%(s’ +8+ P} (@ +y|20)0 [%(s’ -5+ P] (z — y|21’,)
)

L= T 4.2D

8” + aﬂ E” _ 8.’!‘
{4.22)

where the summation runs over p = (0,0), (0, 1), (1,0), (1, 1). The particular cases of
(4.22) which are necessary for the calculations are given in appendix B. Below we also use

t These formulae are a consequence of the important Rosenhain derivative formulae given in appendix B.
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the formula
g & LT 1 _ —lrigg & &} T 0
G[sf sg](z]( 1 7 =eThne el +e5 &+ 7] 07 ’

(4.23)

. For example, the condition (4 20y for N = 2 is & 1?315‘4 = (0, where #; = %:;(0|27),
% = #;(0]27). This condition is not satisfied for non—swgular torl. Therefore elliptic
potentials of the form 2p (x — x1) + 2 (x ~ x2) do not exist.

Example N = 4. For N = 4 the condition (4.20) written for the charactenstlc [ ] reads

V2035,
bt LE BRI/
T \/

257+ 0207 — 002 =0 ' (4.24)

where &; = % (0[41), E = %(0]4%). To obtain (4.24), we used (4.22) twice, The condition
(4.24) rewritten in terms of the Jacobi moduli £ = 2 /19‘3, k= 19%/ 15‘2, coincides with those

given in table A4.
The condition {4.24) is equivalent to the relations between Jacobi theta constants

B2 oy o 02 oF
75‘—:}24 1- —2) 07 = p2 -2 ( -i). 4.25
2 3 ( 19“-_? 4 3 1,‘}3 ﬁg ¢ )
Let us derive the potent]al u4 by direct computation. We have according to theorems ]

and 2
) ) ‘ . (4.26)

Applying (4.22) twice we have

ua(x) = =282In@(x) + C
O(x) = 014 (5"50 ( E
Let us consider. the definite case [8] = [}1].
R ePIR] @) - T 9 a] @)
8 5%]9[8]
< (B3] @3] ) + 3 ] @B 4] (=)
LI IR @+ ORI @I E] @)
S
(T Be-T e+ T Rle-7 ko) @

where we denote 8[c] = 8[£](0]27), ?[.9](2.) = f[e](z[47) and =z = (x /2w, 0).
Using (4.23), we rewrite (4.27) in the form

?5‘1 (x/20) 3 (X [20) 0204

® =
) = PPt 13‘4

g { V2032 2w) B, . B3(x/20)F + 92 (x/20)0F — V3 (x /2.:0)7}2 }
s _ /9352 + 0357 — 0352

L PE O]

B(x)=8

(4.28)

By the conditions (4.24), (4.25) and relations between the squares of Jacobi theta functions
[3), one can prove that @(x) is proportional to 1&3{x [2w)P3(x/2w) and therefore the
potential «4 has the form given in table 1.
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1

0.8 p=3 ci1110

p=2 ¢1101
0.6

0.471

0.2
p=3 ci110

83 K 02, 03 0.7 05

Figure 1. Components of £4 and Eg.

Further examples. Let us consider the function

() e

with p > 2 and the moduli T and 7 are connected by the condition

r 122\ _
e,-[a](o(1 P ))_o. (4.30)

One can show (see the formulae for theta constants of the 27-sheeted cover) that
(4.30) is valid and E5» is not empty for p = 2,3,.... In particular, denoting X =
i%2(0; 277)/94(0; 277), ¥ = $(0; 277) /P3{0; 2PT) we plot below two varieties Eqr for
p =2 and p = 3, respectively, in the coordinates X and Y.

The curve shown in figure 1 corresponds to 2 family of elliptic potentials. We emphasize
that the potential ug is a new elliptic potential connected with an eight-sheeted cover of the
torus. It differs from the ug Treibich—Verdier potential which is not primitive and can be
obtain from the Treibich-Verdier potential 14 by the Gauss transform (3.1) of the moduli
of one of the tori.

We can summmarize all the discussion by the following statement.

X
u(x) = —28% In6[3] (5,0

Conjecture I. There exist infinitely many primitive elliptic potentials ux(x) of genus-2
at ¥ € N. Therefore the two gap locus of Calogero-Moser system has infinitely many
components.

The elliptic potentials exist at N = 4,5 and 8. To prove the conjecture it is sufficient
to find solutions for (4.20) for a countable number of N.
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Appendix A. Two-gap Lamé and Treibich—Verdier potentials

Tables Al-AS give the complete description of two primitive Treibich—Verdier potential
which includes the explicit formulae for the covers, the link between moduli of the tori,
wavefunctions and Lamé polynomials. We also give for complicity the analogous description
of the two-gap Lamé potential, which is known. We note that some of these results
concerning Treibich—Verdier potentials were first given in [6,25, 10].

Table Al. The spectral curves,

The coordinate A

Uy The spectral curve Cz = (w, ) in terms of w, z
u3 w? = —(z% - 3g7) [T (2 — 3e) = it
MB-3pt+p' =0 | : -
g w? = —(z +6e) [Tho (2= 2k (i), i = 1,23
2L200) = g; + 2¢ +2,/Te; — ;) (2ej + Ter)
z3.4() = e + 2¢; £ 2./Ter — ep)(Zer + Te;) ) ) A= mﬁ’-m
M 302 — )22+ dap’ —3(p —e)p —er) =0,
i#jAk=1,23 )
us w =1TZ e~ (), =123
: 24(J) = 6y — 3ep, 25(f} = Ge; — 3er »
3 i _ —dw
IO : M 61206

= — 3% + (51e} — 20g2)z — 369} + 132¢;;
35— 2(e; + 53 4 10pA? + 3(e; + 5p)(e; ~ Pk
=2p'(ei —p) =10

Table A2. The first cover.

The reduction of the

uy  The cover helemorphic differential
— 23-27!3‘\ N Iz dz

us Pl = =y ' =%
o {E=3e9ep a—n () a—2a (1) de _ d

we PG = e 5] 7 =—Qz+3e)

_ (z=3e,+9e1 )2 (z—z3 (D {z—24 i)
P =&+ T e

o eaUe—mUNE-nlinizrlse)? _ bz
is P(“) = &j —+ (512+6:?f+2512%—“]882)2 %‘ = (SZ -+ 38})'2‘5

Table A3. The second cover.

_uy  The cover ¥

w3 H) = —F@2® —9gaz +9g1)

meey e Olz=rp)a—za)(etder—ep P
g Plu)—g = ——ZJ_-l—l—LW*M]

P 9Pg(z)
us B =~ s e --
Ps(z) = 25 + 3efz® - 42672% + 150¢;e4.2° + 30eP e 2
+9(8%¢f + 625efe§ —22leigy/ Dz :
—2Te;(11ef — 8leiga/2 + 475efe})
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Table Ad. The link between moduli of the tori C; and C.

g3 49,2 RS 1 F gt I X
RELC <o WAL T 5

us
Loy gkz—zgfzkz—lgsk2+12
k Z A% =k 1}
us T1=3Bpipie + 3582 43062 4 14 x T2,
B =137 % 11 x 17,8} + §3'0 x 307832 + 153\ x 457gdgsef + 33° x 61gags + 153! x 5 x 19g3
E = k(1 — 4k2) or equivalently ¥’ = k(1 — 4(:)%)
us Fo=2% x3 x5x23ef =37 x 11 x 17} g - 3L elgl + L5583

3= —3re (S7g) + 28 x 3% x 191e} + 25 % 38 x 13 x 457} g}
—~28 % 3% % 23 % 79ef gy — 2% % 3 x 5% x 11ePg3)

ot

Table AS. The wavefunction and Lamé polynomials.

uy  The wavefunction ¥(x, #) and Lamé polynomials A(x)

3 Pix) = %(exp(lx)qﬁv(x; i)
A=/l —e)(p(x) —eg) @=3e), i#jFk=123
Ar=p @) £ 3/ &, 2 = +/3g2)

2
u4 Wix,u) = %(exp().x)(b(x; u)) + %—ﬁ%{%fb(x + wy; wyexp{Ax)

A=/ — e P ) — ) + 3o ~ &) = Tt = eI + 220l Sk
(z = ey +2¢; £2./Te; — er)(2ey, + 7€;)) k € {1,2,3} ~ {i}

Ap=px)~e (z2=—6g)
Us Yix,u) = %(exp(kx)¢(x: #)) + {a; P x + awyp, u) +a; P lx + oy, u))explix)

a; = =B (u1+J§z+6.1e +3p’ ()

- a:7p(uj-e,+ﬁmf§p(u)-ex

Ar =BT — )P () —en) + (o = ¢j) BB (z = be; — 3¢))
Aj= e () = )P G ~er) + (e — &)/ EE=E (2 = bej — 3ep)
8o =BT N =& + iy [BEEE + &y, [EOT

15¢}+27e? ~ e ey =232y (o) —e1)
— oL = = = fi =% ¢
z=z)i#i#n=012734; yZICT

Appendix B. Theta functional formulae

B.1. Relations between theta constants for g = 2

Here we give three groups of formulae which are consequence of the Riemann theta formula
for theta constants when g = 2. These are the relations between the fourth powers of even
theta constants, the relations between the squares of even theta constants and the Rosenhain

derivative formulae:
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We denote D([¢], [8]) = 6;[£]62[8]—5:[£161[§]. Then the following Rosenhain formulae

are valid:

o —
T e e —

o~ — — — pp— p— —
—

et e et e )

et ] b ] e
e I N )

Mo N M o N S

|t B e I s B o B s B e B e B e B e B gy 2 s B s

[y B s B e R

e o S e —

M= e e

1

L 1M /oot T e e e e

et e e L e L T T 1 T ) Greeed b e

222222222

— e, e e e

N e e

e P

1

e b b b e O e 0

Loty B s W o W B

2 yT—MmMem S rrererre s

e e Cemee] b e

et e ) e L b bl L P
R e — s s— s —

s A S P

B.2. Addition theorem for second-order theta functions at g = 2

flz](=z|27).

Here we give the expanded forms of (4.22). We introduce the notation 8[c](z)
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0 [50] € [36] (=) = 62 [§3] (=) + 8% [4] (=) + 67 [55] (=) + 87 [g}]
N6 (15} (=) = 62 [%] (=) + 6 58] (=) — 2 [18] () — 6*[34] =)
91613 (=) = 82[R] (=) - 82 [3] (2 - 8 [13] () + 8> [8] (=)
6 [%] (z) = 8*[3] (z) — 8 [33] (=) + 82 [19) (=) — 6% [5s] (#)
18 [i) 2 =261 ()8 [38] (=) + 26 [}

(=)

o] (29 [Go] ()
[11](2) =20 53] 8 [§] () - 26 [§§] )8 [3] (=)
[38] (=) = 28 [3] (=08 [33] (=) + 28 [15] (236 [36] =)
%3] (2) = 28 [3] (238 [38] (2> — 28 [36] ()8 [83] (&)
[29] (=) = 28 [33] (=) [] () + 26 [$5] (=6 [&8] =)
[29] () = 26 [13] (28 [33] (=) — 28 [38] (=6 [L8] )
[ =26 [31(28 [31] (=) + 28 [31] ()8 [3] (2
(8] @ =28[] @8[] (= - 28 [5}] @8 [1%] ()
812 =28 [§1] @8[] (= + 28 [1¥] (28 [}] )
[%1] (2 =28 [§i] (=) [§] (=) —28 [§3] (26 [¢{] )
[18](2) = 28 [%8] (=8 [18] (=) + 28 [1§] (28 [%] (=)
t ]

A
K
[o
[
[
[
[
[
[
[
[
[
[
[ [

[ 12 =286 {8128 [15] =) — 26 {15] ()8 [}5] )

i
%]
11]9
50]6
f0] 6
%0)¢
01)6
20}9
nle
80 ®
f0] 0
%] 6
0518 g
o0] 6 [o1] =26 [01] 6 [o1] + 28 7] 6 [§1]
HEH o1

B 28|

2[5

1] = 26 [89] 9 [01]
1+ 2 AL
é[g ] 29[01]9k 01
26 +28 [98] 8 [14]

|
63616 [16] — 20 [1a] & [1c] -

B.3. Theta constants of 27-sheeted coverings over q forus

A

o] =
0] 8 [o1] =
0] 8 [11] =
o] =
1 =2

[
1
i
0
1
1]
0
0
0
1
1
0
1
1
1
0
i
1]
[
o
0
]
1
0
1
1
1
0
1
0

[
[
[
[
[

cla]'gff[l
[(l)]gk[l

0
@
8
é
8
g
8
@
g
)
8
8
g
g
8
Z
g
8
8
8

i
1
160
116 [o
16 [5
101 6 [16
0] 6 [

In this subsection we denote the Jacobi theta constants by ¥; = &; (027 m,), 5; =
B (02P ), j=12,3,4.
p=1 Letr——("‘ 5) Then

8 28] = 0[] = (2029:5:59) 6 [%] =6 [58] = @22:845,55)"/2
6[3] =—i8[1}] = @o0u3:8) 2

0[] = 03B + 0207 + 0292 0[] = (0357 — 033 — 02BN
0 [%9] = (9252 ~ p252 + 925D/ e[ 0 = 035 + 0393 — 9390)' 2

8 [1o) = =78 [a0] 03 62 [10] = —ix6 [11] 53
& [ol] = —ir0 [go] 87 62 [o1] = =76 [oo] ¥
0 [01] = —imd [go] 07 62[01] = —=6 [51] 93
61 [11] =6 [o] 23 6 [}1] = -n6 [33] 52
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61 [17] = =0 [¢7] 57 62 [17] = w6 [of] 2
61 [15) = —=6 [30] 92 8, [15] = —izme [33] 92
p=2Letr = (ff 3 ) and denote X = 334, ¥ = 090, Z = 4Dy, A = — X2+ VY2422,

2

B=X?—-Y24+27% C=X"+Y2=Z% D = A+ B+ C. Then the following formulae
hold:

bll=Xx+Y+2 0 l=x+v-2Z

o[l =X-Y+Z 6% =x-¥-Z

g2 [(1)8] - 23/2(XY)”2(D”2 + 21/22) 52 [(IJ?] — 23/‘2(Xy)1/‘2(Dl/2 _ 21/22)
g2 [8(13] — 23/2(XZ)”2(D‘/2 +21/2Y) o2 [%] - 23/2(XZ)”2(D”2 _ 2‘/2}’)
6‘2 [(I}(I)] = 23/2(YZ)I/Z(D1/2 + 21/2X) 92 [H] — 23/2(YZ)1/2(D1/2 _ 21/2X) i
61 [10] = —m @X¥Y#(9FBY2 + 211297 2)(DV? 4 2112 7)1/

6:[18] = —im QX HVHBFIBY? 4 22F2ZY (D2 422 Z) 12

6 [o1] = —im QX Z)V @2CY? + 21292y )(DV? + 2127y~ 1/

[

1]
6, [§1] = —m(2XZ)'A(FICI2 + 21252y )(DV? 4 2Y2y) "1/
o1 [51] = —inQZN)VABIC!2 + 2 2o X) (D2 + 212 gy
6 [} = ~n @z AGICI + 2V F XY (D2 + 22 Ky~
61 [1o] = —=QZY)A (0] BI2 4 21295 Xy (D2 4 212Xy~ 12
6:[16) = —w 2ZV)A @} BV2 4 21253 X) (D2 4 2M2x) 12
61 [11] = —iw QXYY *@iA? — 2%i0f Z) (D2 + 2127y
92 (V] = —im XYY/ (@242 — 22432 Z)(DV? + 21/2Z)~1/2

o1 [11] = m@X Z) @5 AY? — 212w}y ) (D2 4 212y 12

6:[01] = —in X Z)4(B52AY2 — 2HFY YDV + 22y
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