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On the two-gap locus for the elliptic Calogero-Moser model 

V Z Enolskiitt and J C Eilbecki 
t Department of Mathematic+ Heriot-Wan University, Ricaton, Edinburgh EH14 4AS, UK 
i Department of Theoretical Physics, Institute of Metal Physics, Vemadsky str. 36, Kiev-680, 
252142. Uknine 

Receivell 30 March 1994, in final form 7 December 1994 

Abstract. We give analytical description of the locus of the two-gap elliptic potentials 
associated with the corresponding flow of the CalogerwMoser system. We start with the 
descdption of Treibich-Verdier two-gap elliptic potentials. The explicit formulae for the covers, 
wavefunctions and Lami polynomials are derived, together with a new Lax representation for the 
partide dynamics on the locus. We then consider more general potentials within the Weientrass 
.reduction theory of theta functions to lower genera. The reduction conditions in the moduli 
space of the.genus-2 algebraic curves are given. This is a subvariety of the Humbert surfnce, 
which can be singled out by the candition of the vanishing of some theta constants. 

1. Introduction 

The Calogero-Moser model, whose complete integrability was shown a number of years 
ago (cf [ZZ]), continues to attract more and more attention. This model has a rich algebraic- 
geometrical structure: its flows are connected with the pole dynamics of elliptic solutions of 
completely integrable partial differential equations [l], the Lax representation for the model 
depends through elliptic functions on the spectral parameter [ZO], and only the integration 
in tems of zeros of theta functions for the model is known [ZO]. The system permits a 
relativistic generalization, which is also completely integrable [23]. 

The classical Poisson r-matrix structure for the elliptic Calogero-Moser model was 
described very recently [7,24]. The r-matrix found appears to be of linear dynamical type, 
i.e. dependent on the dynamical variables. The classical Poisson struchue for the relativistic 
galvanization of the Calogerc-Moser model is described only in the soliton case with a 
quadratic r-matrix of dynamical type [Z]. The separated variables for these systems remain 
an unsolved problem besides the case of a small number of particles (see, for example, @I). 

The quantum Calogero-Moser problem also has a rich algebraic structure [ 131. It is 
remarkable that the solutions of the quantum problem are isomorphic to the solutions of the 
Knizhnik-Zamolodchikov equations which are now understood to play an important~role in 
the theory of quantum integrable models [26]. 

Because the Calogero-Moser model describes the pole dynamics for the elliptic solutions 
of the Kadomtsev-Petviashvili-type equations [l], its elliptic case becomes the dlassically 
known Lam6 potentials of the Schrodinger equation. Although this paper is devoted 
to the investigation of elliptic potentials of the one-dimensional Schrodinger equation, 
we emphasize the importance of such potentials for different problems: the finite-gap 
multidimensional spectral problem [30], the Wess-Zumino-Witten model on the torus [I21 
and others. 

.03054470/95/041069+20$19.50 @ 1995 IOP Publishing Ltd 1069 
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All the results given below can be generalized to higher genera, but we shall restrict 
ourselves to the investigation of the first non-trivial case of genus-2 to give the more 
complete formulae. Throughout the paper we have used computer algebra systems 
(Mathematica [3 11 and Maple [ 1 I]) to derive and simplify the formulae. 

The paper is organized as follows. In section 2 we discuss the linear r-matrix algebra 
for the Calogero-Moser system and define its restriction to the locus associated with the 
KdV dynamics. In section 3 we describe the two-gap Jim& and Treibich-Verdier potentials 
[27, 281 for which we find explicitly the covers over the ton, derive the wavefunctions 
of the associated Schradinger equations and Lam& polynomials. We also give a new Lax 
representation for the dynamics of particles on the locus in terms of 2 x 2  matrices. We show 
in section 4 that Treibich-Verdier potentials are special cases of elliptic potentials. Using 
the classical reduction theory of Riemann theta functions to lower genera (see, for example, 
14, 5, 18]), we give necessary and sufficient conditions under which the two-gap potential 
is elliptic. We formulate these conditions in terms of vanishing of some theta constants 
which, in turn, are some subvarieties of Humbert surfaces (see, for example, [18, 291). We 
derive one of the two-gap Treibich-Verdier potentials from this theta functional approach 
and give a new example of an elliptic potential. The paper is supported by two appendices 
which contain the description of spectral characteristics of the Treibich-Verdier potentials 
and all the necessary formulae to complete the theta functional computations mentioned in 
the paper. 

2. The Calogero-Moser system on the locus 

The elliptic Calogero-Moser model is the system of N one-dimensional particles interacting 
via a two-particle potential described by the Hamiltonian 

H = yi' + 63 (Xi - X j )  
i i . j  

with p being the Weierstrass elliptic function [3] with the periods 20, 2w' and y i ,  xi 
(U = 1, . . . , N )  being canonical variables, [ y j ,  y j )  = [x i ,  x j )  = ~ O ,  [yi, x j )  = a i j .  

Let {X,J = {Hi, Ea},  be basis matrices, Hi = ( & j & ~ ) ,  i = 1, .  . . , N, Ea = E,,, = 
(SnjS,k), n # m, m, n = 1, .  . . , N. 

The Lax operator of the system L was found by Krichever and has the form [20] 

where 

where U and are Weierstrass functions. The Hamiltonian flows of the system are generated 
by TrL", in particular, TrL2 gives the Hamiltonian (2.1). 

The Poisson structure of the system, as recently shown by Sklyanin [24] and Braden 
and Suzuki [7], is described by a linear dynamical r-matrix algebra, 

{LI(U), LZ(V)) = [ r d u .  U), L ~ ( u ) l -  h ( u ,  U), Lz(u)I (2.4) 

where L I  = L @ I ,  La = I @ L,  rIZ(u. U) = +"(U, u)X, @ X, is an N 2  x NZ matrix 
depending on the dynamical variables, and m ( u ,  U) = Pr12(u, u ) P ,  P is the permutation: 
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Px @ y = y @ x. The non-zero elements of the r-matrix are [7] 

I071 

W.") ~r iu (U, U) = $ Q ~ ( U )  r-"(u, U) = Qc(u - u)e 

@ ( U 3  U) = f(U - U) + 5w - :(U). 
r"(u, U) = @(U, U)& ( 2 5 )  

The r-matrix satisfies the dynamical Yang-Baxter equation, 

Idlz(X,  Y), d13(x, Z)l+ Id1z(X, Y)., du(Y, Z)l + [d3z(z1 Y ) , ~ I ~ ( x , z ) ~  + {Lz(Y) ? dn(x ,  z)] 

-{L3(4 ? diz(X, Y)) + [S13(x,z),  MY)^ - [SIZ(X, Y). h(z)1 = 0 (2.6) 
where the two other equations are obtained by cyclic permutations and in this context 
ddx,L) =rlz(x.y)@I, d d y , z )  = I @ ~ z ~ Y , z ) , ~ I ~ ( x , Y )  = C I ( . V r I * " ( x , y ) X ~ I X I I @ X X u ,  
and the S-matrix has  the form 

(2.7) 
S n ( x , z )  = -Q& -z)exp@(x,z)E-,@ Hi @ Ea 
Sdx. y) = -Q& - y)exp @(x. y)E-, @ E, @ Hi. 

We point out that the S-matrix (2.7) differs from that given by Sklyanin [24], where 
a different representation for the operator L was considered. Although the S-term already 
appeared in,[9], its significance became more evident after 1241. 

The equation 

det(L - A I )  = 0 (2.8) 

defines the Krichever curve i.e. the algebraic curve C N  = (A, U) which is an N-sheeted 
cover of a torus in n : C N  --t CI 

(2.9) 

where r;(u)  are elliptic functions. 
n ( U )  = -(:'@(U) + Zp;j, rz(u) = (:)@'(U). 

the variety of stable points of the second flow, grad H-the locus C N .  

In particular, the first two of them are given by 

We consider the restriction of the third flow, TrL3 of the Calogero-Moser system to 

It is shown in [I] that if the particles xi move over the locus according to the equation 
N dxi 

_ = -  12 p ( x ; - x j )  i = 1 ,  ..., N 
j=i,j#i dt 

then 
N 

u(x) = 2 - j 3 X  -xj(t)) + C  
j=l 

(2.1 1) 

(2.12) 

is an elliptic solution of the KdV equation U( = 6uu, - uIxr where C is a constant. 
The geometry of the locus LN was studied by Airault et a1 [ 11 and others. They showed 

that the locus is non-empty for positive triangle integers N ,  i.e. for numbers of the form 
N = g(g + 1)/2, where g is the number of gaps in the spectrum (or the genus of the 
corresponding algebraic curve). The corresponding elliptic potential is the g-gap Lam6 
potential. Recently Treibich and Verdier [281 found a new set of elliptic potentials of the 
form (2.12) corresponding to non-triangle numbers of points on the locus CN. In particular, 
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for the points of the locus xi being the half-periods they found a family of elliptic potentials 
of the form 1271 

(2.13) 

which are associated with the cover of degree N = C;=oggi(gi + 1) over a torus. We 
shall refer to these potentials as Treibich-Verdier potentials. 

The curve (2.8) becomes hyperelliptic when restricted to the Ljq [4]. Therefore one 
expects to be able to write down a 2 x 2 Lax representation for the particle dynamics 
on a locus. This is done below for the two-gap Lam6 and Treibich-Verdier potentials. 
Nevertheless the r-matrix formulation of the Calegero-Moser flows restricted to the locus 
remains an unsolved problem. 

3. Two-gap Treibich-Verdier potentials 

3.1. The spectral characteristics of elliptic solitons 

We shall start on the potential of the form (2.13). There exist exactly six two-gap Treibich- 
Verdier potentials ujq(x) associated with N-sheeted covering of the torus (shown in table I). 

We note that the three last potentials are simply the two-order transformation (Gauss 
transformation) of the first two potentials 

&lw, $0’) = p ( z )  + p ( z  + U ‘ ) .  

Therefore we shall refer to the first three potentials as primitive. 
To describe the two gap Lam6 potential 6p ( x )  and primitive Treibich-Verdier potentials 

we have to 

exhibit the associated algebraic curve of genus-2; 

(3.1) 

5 

c2 = (w, z), w2 = n ( z  - Z d  (3.2) 
i=1 - 

give its covers z : CZ_+ C, and 2 : C2 + C1 over the tori C, = (p’, p), (p’)* = 
4p3 - g2p - g3 and C, = (g, a,’ (f5’)z = 463”J - &2BJ” - &, where the moduli 22, 23 
are expressed in some way through the moduli gz, g3; 
describe the two-gap locus LN; 
write the solution Y of the Schrodinger equation. 

We can do all this by classical means (which modern computer algebra makes more effective) 
following the work of Hermite [15] and Halphen [14]. 

Table 1. Six hvo-gap Treibich-Verdier potentials. 

N unr(x) 
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Let us consider the Lam6 equation 

(3.3) 

I where 

for the function Y: 

Za;(al + 1) = N is the degree of the cover. 
We shall use the following generalization of the Hermite [I51 and Halphen 1141 ansatz 

where the function @(x;  U) is the solution of (3.3) for n = 1, ul = 1 is given by (2.3)~and 
A j ( z ,  A, U) are some functions of the spectral parameters z, A and U. Although the ansatz 
is valid for any point of the locus LN we shall consider below only special points of the 
form x; = oi or 0 found in [27] and listed previously in table 1. We shall refer to the L.am' 
polynomials & ( x )  as the values of Y(x; U) at values of U corresponding to the edges of 
the gaps u =uk ,k  = 1 , .  _ .  , 5 .  

After substituting the expansions of * ( x ,  U) near the pole at x = 0, 

1 
+ B ' o x 2  + g2 - 5 @ W X 3  + , . . 

6 40 
Q ( x , u ) = - - -  

~X 2 
and near x = D; 

(3.5) 

to (3.3) and equating the principal parts of the poles we come to an overdetermined linear 
system for A;. The compatibility conditions give exactly two conditions 

PI(L Z, @fu)) = 0 . Pz@, Z, @(U)) = 0 (3.7) 
with polynomials Pi of their arguments. By eliminating the variables z or &a  from the 
conditions (3.7) we obtain two equivalent realizations of the curve (3.2); eliminating the 
variable z we obtain the first cover. 

To find the second cover we use the fact that there exists the reduction formula 

(3.8) 

with (g, lying on the torus 51 and the coordinate 6 being a rational function of z, 

(3.9) 

where QN and PN-3 are polynomials of orders N and N - 3, respectively. 

is given in appendix A. 

3.2. The dynamics on the locus 

The complete description of the dynamics on the locus under the action of the KdV flow 
was given in [l] for the case of the two-gap Lam6 potentid_by some tricky manipulations 
with (2.10) and (2.11). It was shown that the dynamics are described by a foliation where 
the basis and the bundle are, respectively, the elliptic curves C, and ?I whose moduli me 
inter-dependent. The paper also conjectured that the same foliation would occur for all 
two-gap elliptic potentials. 

The description of the spectral characteristics of the primitive Treibich-Verdier potentials 
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We show below how to compute the second curve ?I for primitive Treibich-Verdier 
potentials. The statement of [ I] about the foliation can be proved by means of the Weierstrass 
reduction theory 14, 181 in the next section. 

To describe the dynamics over the locus we write the Jacobi inversion problem, for the 
curve associated with elliptic potential 

From the trace formulae [32] written for the elliptic potential in the form 

we find in the vicinity of the point xj the decompositions 

(3.11) 
1 

E2 
Pi (Xj + E ,  t )  = - + o(1) M(Xj + E ,  t )  = -3 

Therefore the equations (3.10) in which x = xj and integrals are hyperelliptic are 

Ql(Pl(xj)) =B(axj  +bt+c)  & z ( ~ i ( ~ j ) )  =aJ"(df+e) (3.12) 

where  PI,^ are rational functions of the Nth degree, p and aJ" are Weierstrass elliptic 
functions defined on the first and second tori, respectively; a,  b ,  c, d and e are constants 
that appear under reduction. By eliminating the variable from (3.11), we have an 
algebraic equation of the Nth degree with respect to p and coefficients depending on 6. 

In particular, we have the following isospectral deformation of the potentials uz, uq and 
us. Let 

expressed in terms of elliptic functions in the following way: 

N 

X, = - 3 E p ( x j  - x k )  j = 1, ..~., N .  
kij 

Then we have for N = 3,4 and 5, respectively, 

u3 : 4x3  - 9gzx + 9g3 + Faj(8ir) = ~ o  (3.13) 

uq : 9(x - z ~ ) ( x  - z ~ ) ( x  + 4ei - (3.14) 
us : 9P5(X) + 4(X - 3ei - 9ej)(X - 3ei - 9ek)@(Sit) = 0 (3.15) 

where the polynomial Ps(z) in (3.15) is given in table A3. 
We note that the rational limit of the dynamics is the same for all the potentials. The 

equations (3.13)-(3.15) give the integration of the corresponding Calogero-Maser flows 
restricted to the locus. 

+ 4(x  + 6e;)(@(Sit) - Zj) = o 

We also note that (3.13) can be extracted from [l, p 1441. 
Let us construct the Lax representation for CalogerwMoser system, being restricted to 

the locus. We choose the ansatz for such a representation in the form of 2 x 2 matrices 

(3.16) 
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It follows from (3.16) that 

V ( z )  = - i ~ ( z )  "(2) = - ~ G ( z )  + U(z)Q(z). '  @(z) ='2V(z)Q(z). (3.17) 

To construct the Lax representation we have to define U ( z )  and Q(z). Let us introduce 
the~following ansatz: 

N 

U ( z )  = n ( z  - X , )  Q(z)  = 5 + 2@(8it) 
i=l 

(3.18) 

where the polynomials are U ( z )  and the function < = <(z) is the expression for tbe second 
cover taken from table A3 and the quantity @(Sit) is expressed in terms of Xi from (3.13)- 
(3.15) with the help of the Viett theorem. 

The spectral curve has the form 

(3.19) 

where the polynomial w2 is taken from table A1 and @ is the rational function taken from 
table A3. 

To find these Lax representations we use the Lax representation for the dynamics 
associated with the curve el, with 

(3.20) U ( { )  = < - @(Sir) Q ( 5 )  = 5 + 2@(Sit) 

and raise this representation to the curve Cz using the formulae for the cover. 

potentia1 u3 which is described by the equations 
For example, let us consider the particle dynamics associated with the two-gap Lam6 

Pi, + Pi3 = 0 d l  + Pi3 = 0 Pi1 + 6 4 2  = 0 (3.21) 

and 

$1 = -12& $2 = -12pp $3 = -12812. (3.22) 

The entries U and Q to the matrices L and M have the form 

U(Z)  = 4(Z - X l ) ( Z  - Xz)(Z - X 3 )  

Q(z) = 4z3 - 9gzz + 8x1 X 2 X 3  + 27g3 
(3.23) 
(3.24) 

where, in this case, Xi = 363jx. The curve det(L(z) - y l )  = 0 has the form 

(3.25) 

The Lax representations allow to construct the linear r-matrix algebra of the form (2.4) 

2 2  Y 2  = h(4Z2 - 3gz) (Z - 3gz)(4z3 - 9gzz + 27g3) . 

which we will discuss elsewhere. 

4. Elliptic potentials from the theta f&clional point of view 

Let~C, = ( w ,  z )  be hyperelliptic non-singular curve of genus g, define by the equation 
%+I 

j=l 
~ W' = n (Z - z(Qj)), z(Qj) = zj E C, zi # zj (4.1) 

and realized by means of the function z as a two-sheeted covering of the Riemann sphere 
with branching points at QI ,  . . . , QZ,+I. QzR+z3 z(Qz,+z) = 00. 
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Let us fix on (4.1) the homology basis (A, B )  = (AI, . . . , A,; B1, . . , . E,) on C, and 
a canonically conjugated basis of holomorphic differentials w = (U,, . . . U,) in such a way 
that the Riemann matrix has the form 

with the matrix r belonging to Siege1 upper half space S, of degree g. Let us denote by 
A(Q) = 1,” w the Abel map C, + J(C,), where J(C,) is the Jacobian of the curve C,. 

Let us determine the Riemann theta function B[s](zlr) on U xS, with the characteristics 

by the formula 

~ [ E I ( z I ~ )  = expni(((m+~&‘)r,(m+~Ef))+2((m+1E’),a+~&“)j (4.2) 
man 

where (., .) means the Euclidean scalar product. For integer characteristics we have 

If E; and E! are equal to 0 or 1, the characteristics [E] are the characteristics of the 
half-periods. The theta function (4.2) is odd or even if [E] is a half-period characteristic, 
and we call the corresponding [E] odd or even. 

The function (4.2) satisfies the two sets of functional equations (see, for example, [ZI]), 
the transformational property 

S[EI(Z + n” + rn’lr) = expni[-(n’r, n’) - ~ ( n ‘ ,  z )  - (E’, n’) + (E”, n’)]e[&i(~ir) 

(4.4) 
where n’, n” E 23 and the modular property, which describes the transformation of the 
theta function under the action of the group Sp2,(Z) .  

The almost-periodic function ufx) is called ajinite-gap potential if the spectrum of the 
Schrodinger operator H = -8,” +u(x)  is a union of the finite set of segments of a Lebesque 
(double absolutely continuous) spectrum. Let us formulate the Its-Matveev,theorem [ 161. 

Theorem I (Its-Matveev theorem). The potential u(x) and the eigenfunction Y(Q, x) of 
the Schrodinger operator H = -8,” + u(x) associated with the g-gap Lebesque spectrum 
C = [z1z2] U [z3.z41 U .. . U [z2,+1, 001, are expressed by the formula 

a2 
ax2 

u ( x )  = -2-ln B(iUx - A@) - Klr) + C (4.5) 

exp (ix LQ a) . (4.6) 
B(iUx + A(Q) - A(D)  -KIT) 

0(iUx - A(D) - Klr) Y(Q, x) = 

Here Q is a point on a hyperelliptic Riemann curve (4.1). Q is the differential of the second 
kind with zero A-periods which has a second-order pole at infinity with the principal part 
t-*dC, where is a local coordinate, U is the vector of B-periods of the differential Q, 2, 
is a non-special divisor, K is the vector of Riemann constants. 

The components U;, i = I ,  . . . , g of the winding vector U in (4.5) and (4.6) are 
expressed in terms of the normalizing constants cij of the holomorphic differentials and 
projections of the branching points ZI, . . . , z2,+1 by the formulae 

Uj = -2iclj j = 1,. . . , g . (4.7) 
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Further. we shall restrict ourselves the case of genus-2 curves. 
Let us give the theta functional construction of the two-gap elliptic potentials. Following 

section 2, we describe such points t E S2, for which the function (4.5) ,is elliptic. For this 
purpose we consider the Humbert suiface H A ,  A = N 2 ,  i.e. the variety 

(4.8) 

The quantity A is an invariant with respect to the action of  the group Sp&) [18]. The 
following theorem summarizes the Weierstrass reduction theory for the case of genus-2 
algebraic curves (see, for example, [18,14]). 

Theorem 2 (Reduction theorem). Let C2 and CI be the curves of genus 2 and 1, which are 
equipped by the homology basis ( A I ,  A2; E l ,  E l )  and ( A ,  E ) .  The curve C2 is an N-sheeted 
covering of the torus C I  if and only if the moduli of C2 belong to the Humbert surface with 
A = N2 and the integer numbers 01, B, y ,  6 ,  E ,  being expressed in terms of of the elements 
of the integer matrix M, mapping the basis ( A I ,  A2, E l ,  Bz)  into the basis ( A ,  B )  

are given by the following formulae: 

a = m12m41 - mnm42 
6 = m m 2 1  - m1m.z 
B = mlv" - m31mlz - ( m m 4 2  - m 4 P " .  

Y = mzim32-mxmn 
E = m 3 1 m ~ - m 4 v "  

Moreover, there exists an element U E Sp4(Z) and a point t E S2 such that 

(4.9) 

(4.10) 

Under the conditions of the reduction theorem, the two-dimensional theta function is 
reduced with the help of the addition theorem for theta functions of Nth order (see, for 
example, [17]) to the finite sum of products of Jacobian theta functions with the moduli 

Below we apply the Weierstrass reduction theory to describe all elliptic genus-2 
N T I I  and N q 2 .  

potentials. 

Lemma 1. The function 

(4.1 I) 

with arbinmy (a, B )  E J(C2),  Imw'/w = Imy > 0 is an Nth order elliptic function with 
primitive periods 2w, 20' and can be represented in the form 

n m 

f ( x )  = 2 c p ( x  -xj) + 6 c @ ( x  -xk). n + 3m = N (4.12) 
j = I  k=l 

with x j  belonging to the locus LN or its closure. 
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Proof: It follows from the transformational properties of theta functions that the function 
(4.1 1) is a doubly periodical function a on the toms CI with the primitive periods 20, 20’ 
and r = w’/w.  Let us calculate the number of poles of the (4.1 1). To do this we consider 
the function 

V Z Enolskii and J C Eilbeck 

(4.13) 

where $3 is a Jacobi theta function. The function f (x) is meromorphic on the toms C1 as 
follows from the transformational properties of the theta function. Further, the denominator 
(4.13) has exactly N zeros in CI: 

w’+w-2orw k = O , I , _ _ . ,  N - 1 .  2k + 1 
N 

x = -  

Therefore, according to the Abel theorem, the numerator has exactly~ N zeros. These are 
XI, . . . , XN.  To prove that the function (4.1 1) can be written in the form (4.12) we note 
that the function (4.11) is a two-gap potential and therefore the corresponding wavefunction 
can have a pole of no more than second order. Using the Schrodinger equation we find 
the coefficients 2 and 6 in the decomposition (4.12). The proof that the points XI, . . . , XN 
belong to the locus LN is carried out by substituting the ansatz (4.12) into the SchrBdinger 
equation and equating the principal parts of poles to zero. 

Theorem 3 [Main theorem). The two-gap potential as defined by (4.5) is an elliptic function 
of the Nth order if and only if 
(i) C2 covers a torus C1 N-sheetedly; 
(ii) U1 U2 = 0. 
Proof: 
Sufficiency. Suppose the conditions of the theorem are fulfilled and for definiteness UI = 0. 
Then the function (4.5) is an elliptic function of order N according to the lemma. 

Necessity. Let us suppose that the potential (4.5) is an elliptic function with periods 
20,20’, h o l d  > 0. Then the following identities are valid due to the transformation 
properties of the theta function (4.4): 

2UIw = r(n+p‘rll+q’rl2) 
(4.14) 

2U1w’ = s(n‘+pr~~+qr~z) 
where n, m,  n‘, m‘, p .  q ,  p‘ ,  q‘ E Z, r, s E N. Eliminating UL~’, Ujo, i = 1,2 from (4.14) 
we find that r belongs to the Humbert surface HA, with 

2Uzw = r(m+p’r12+q1m) 
2Uzo’ = s(m’+prIZ+qrz) 

I ,  a = m p - mp, 6 = p q ’ -  p’q 
y = nq - n’q’, E = nm‘ - mn’ (4.15) 
,3 = np  - m’q’ - (mq - n‘p‘) . 

Calculating the invariant A, defined in (4.8). we find that A = N2 with N = 
np  + mq - m’q’ - n’p’. Therefore the assumption of the theorem leads to the conclusion 
that Cz covers a torus N-sheetedly. But in this case we can define a matrix M which maps 
the homology basis on C2 to the homology basis on CI. Taking into account (4.9) we find 

/ P -PI\ 
M = l  -“ 1 np+mq-m’q’-n’p’ = N .  -n’ n (4.16) 
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According to the reduction theorem there exists a transformation o E Sp4(Z) which maps 
the matrix r to the form (4.10). Therefore we have in the new homology basis 

p = N  q = o  n =  , 1 m = O  
(4.17) p' = 0 q' = 0 n 4 ~ 0  m ' z - 1 .  

From (4.14) and (4.16) we conclude, that 

2Ulo = r U ~ W '  = ~ N t l l  U2 = 0 (4.18) 

and the theorem is proved. 

It follows from the conditions of the theorem that elliptic potentials are singled out from 
finite-gap potentials by some subvariety in the Humbert variety. We shall call this variety 
Ea-variety, Ea E Ha.. 

Let us derive the two-gap Lami and Treibich-Verdier potentials from the iduction 
technique of finite gap potentials to elliptic potential developed above. 

Proposition I (Proposition on the Treibich-Verdier potentials). The only two-gap primitive 
Lam6 and Treibich-Verdier potentials are the three first elliptic two-gap elliptic potentials 
from table 1. 

Proo$ Let us consider the elliptic potential 

with [6] running through all the six odd characteristics. Let us consid& the function 

At x = 0 this is a theta constant with the characteristic [SI. One can calculate, using (4.3), 
that at x = o the characteristics become [SI+[::], at x = o' the charteristic [SI tums into the 
characteristic [ S ] + [ ~ ~ ]  and at x = o+o' itis [8]+[::]. Let usdenote by (no,nI,n2,n3) 
the coefficients in the decomposition U N  = nop(x)+nlg (x+w)+n263 (x+w+w')+n363 (0') 

with x L o n k  = N and ni = 2 or 6. Let the characteristic [SI run through all the odd 
characteristics. Then for odd N we have 

x = o  x=o x = w '  ~ x = o ' + w '  (no,nlrn2,n3) 
[El [GI [El ~ [:!I (no. 0, n2. n3) 

[;:I [AY1 [%I KI (no. O,O, 0) 

[GI [;el [??I El (no, 0, 0,O) 

[:;I K11 [Dl [::I (no. n ~ ,  0 . 4 )  

K I  I:;] [!:I ~ [GI (no, n ~ ,  nzr 0)  
[;;I E11 [Dl [::I (no, O,O, 0). 

We see that the only possibilities are u ( x )  = 663(x) or 2~(x+w1)+263((x+wz)+26a(x+w3) 
and u(x )  = 6a(x)  + 2p (X + mi) + 263 (x + o k ) .  
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For even N we have 

4.1. Elliptic subvarieties of Humbert surfaces 

The components of the Humbert surface are described in terms of the vanishing of some 
modular forms [18], more generally, $e Humbert surface HA is described by some ideal in 
the ring of modular forms [29]. Therefore it is natural to describe elliptic subsurfaces E A  
of HA, A = NZ in terms of the vanishing of some theta constants. 

Proposition 2 (Proposition on the elliptic points). Let the non-singular curve associated 
with the two-gap potential cover a torus N-sheetedly. Let us fix such a homology basis that 
the matrix T has the form (4.10) and belongs to the component HA.  Then elliptic points in 
H A  are separated by the condition 

(4.20) 

where [6]  runs through all the six odd characteristics and i = 1 or 2. 

Proof: It follows immediately from the Rosenhain formulae for the normalizing constants 
of the holomorphic differentialst and the expression (4.7) for the winding vectors. Assume 
that the curve Cz has the form w2 = z(z - l)(z - i~)(z -hz)(z -h3); then the normalizing 
constants of the holomorphic differentials vi = (cilz+ciz)dz/w, i = 1 , 2  have the form [I91 

(4.21) 

where [Q] is an odd theta constant and [&I,  i = 1,2 and 3 are such even theta constants 
that [GI = RI]  + Rz] + [%,I. 

The simplest ones are at 
N = 2 p ,  p = 1, . . . because to simplify we can apply the the addition theorem for the 
theta functions of the second order (see, for example, [XI) 

Let us give a few examples for the condition (4.20). 

(4.22) 

where the summation runs over p = (O,O), (0, l ) ,  ( l ,O) ,  (1, 1). The particular cases of 
(4.22) which are necessary for the calculations are given in appendix B. Below we also use 

t These formulae are a consequence of the imponant Rosenhnin derivativefomulue given in appendix B. 
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the formula 

(4.23) 
For example, the condition (4.20) for N = 2 is ~ Y ; t 9 3 @  = 0, where t7; = rP,(012r), z; = st,(OjZz). This condition is not satisfied for non-singular tori. Therefore elliptic 

potentials of the form 20 (x  - X I )  + 7.0 (x  - x 2 )  do not exist. 

Example N = 4. For N = 4 the condition (4.20) written for the characteristic [A;] reads 

- + J f i 3  2g2 3 + 92g2 2 4 - $2$2 . 4  2 -  - 0 (4.24) 

where st, = tYi(O[4r), 77; = it,(OId.z);). To obtain (4.24), we ~1sed(4.2_2) twice. The condition 
(4.24) rewritten in terms of the Jacobi moduli k = @/e:, k = V:/8:, coincides with those 
given in table A4. 

45-l?;773 
e 3  

The condition (4.24) is equivalent to the relations between Jacobi theta cnnstants 

(4.25) 

Let us derive the potential u 4  by direct computation. We have according to theorems 1 
and 2 

Let us consider.the definite,case [SI = [A:]. Applying (4.22) twice we have 

~ 1 1  g- 00 
9 io01 [Oll 

2 
where we denote FIE] = 0[&](0[2r), e[&](%) = 9[e](r[4r) and z = (x/2w,O).  

Using (4.23), we rewrite (4.27) in the form 

(4.26) 

(4.27) 

X [ & $ ; ( X / z W ) &  + l? : (X /2W)@ @(X/2@)$ ~~ - l? j (X /2W);z  ~~ 

2772 + 02772 - *2772 
J + 3 3  2 4  4 2  

4 

(4.28) 

By the~conditions (4.24), (4.25) and relations between the squares of Jacobi theta functions 
[3], one can prove that O(x)  is proportional to L P ~ ( X / ~ O ) ~ ~ ~ ( X / ~ W )  and therefore the 
potential u4 has the form given in table I .  
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Figure 1. Components of Ed and Es. 

Further examples. Let us consider the function 

with p > 2 and the moduli t and ? are connected by the condition 

(4.29) 

(4.30) 

One can show (see the formulae for theta constants of the 2p-sheeted cover) that 
(4.30) is valid and En2 is not empty for p = 2,3, .... In particular, denoting X = 
i&(O 2 p t ) / ~ Y 3 ( 0 ;  Zpt), Y = &(0; 2p?)/93(0; 2 P ? )  we plot below two varieties EW for 
p = 2 and p = 3, respectively, in the coordinates X and Y. 

The curve shown in figure 1 corresponds to a family of elliptic potentials. We emphasize 
that the potential ug is a new elliptic potential connected with an eight-sheeted cover of the 
torus. It differs from the ug Treibich-Verdier potential which is not primitive'and can be 
obtain from the Treibich-Verdier potential uq by the Gauss transform (3.1) of the moduli 
of one of the tori. 

Conjecture I. There exist infinitely many primitive elliptic potentials U N ( X )  of genus-2 
at N E M. Therefore the two gap locus of CalogerwMoser system has infinitely many 
components. 

The elliptic potentials exist at N = 4,5 and 8. To prove the conjecture it is sufficient 
to find solutions for (4.20) for a countable number of N .  
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We can summarize all the discussion by the following statement. 



Two-gap locus for elliptic Calogero-Moser model 

Appendix A. 'ho-gap Lam6 and 'keibich-Verdier potentials 

Tables AI-A5 give the complete description of two primitive Treibich-Verdier potential 
which includes the explicit formulae for the covers, the  link^ between moduli of the tori, 
wavefunctions and Lam6 polynomials. We also give for complicity the analogous description 
of the two-gap Lam6 potential, which is known. We note that some of these results 
concerning Treibich-Verdier potentials were first given in [6,25,10]. 
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Table AI. The speCar C U N ~ S .  

U N  The spectral curve CZ = (W.  L) 
The coordinate A 
in terms of w ,  I 

Table AZ. The first cover. 

U N  The coverx 
The reduction of the 
holomorphic differential 
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Table A5. The wavefunction and Lam6 polynomials. 

U N  The wavefunction ul (x ,u )  and Lam6 polynomials A(x) 

Appendix B. Theta functional formulae 

B.1. Relations between theta constants for g = 2 

Here we give three groups of formulae which are consequence of the Riemann theta formula 
for theta constants when g = 2. These are the relations between the fourth powers of even 
theta constants, the relations between the squares of even theta constants and the Rosenhain 
derivative formulae: 

4 00 - - 4  10 
g 4 ~ : 1 - 9  t I1i  - [ 0 1 ~ + g 4 t : ~ ~  =e4[~:i+e4[:;i 
g4 [::I - g4 [Ab] = g4 tE1 + 9 1011 - L o 1  + [A71 

4 I I  - g 4  10 4 00 - 9 4  01 4 0 0 '  
94G:l-0 L11- [001+9 Lo]-  Ll+@ Loll 

4 00 - - 4  00 



B.2. Addition theorem for second-order thetafwtctions at g = 2 

Here we give the expandedforms of (4.22). We introduce thenotation&~I(z) = O[a](rlZs). 
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-2 00 -2 11 -2 10 -2 01 e [::I 8 [::I (2) = 8 Loo] (2) +e  fool (2) + e [00] (z) + e too] (2) 
00 0 00 -2 IO -2 01 e [I ,I [ I  11 (2) = 6’ [::I (z) + e^z [:AI (2) - e [00] (2) - e [00] (2) 

e [?:I 0 [El (2) = e ioOl (2) - e [001 (2) - e [Ou] (2) + e [00] (2) 
00 e 00 E -2 00 -2 11 -2 10 e [OJ Loll ( ) = e Lo] (2) - 8  [00] (2) + e [00] (2) - 6’ [:A] (2) 

e [;A] e [A;] (z) = 26 [A:] (z$ [;:I (z) + 26 [A:] (z)& [;A] (2) 

e [:I] e [ i t ]  (2) = 26 [A;] (216 [::I (2) - 26 [A:] (a8 [::I (2) 

e [:A] e E:] (2)  = 6 EA] ( ~ ) 6  [::I (2 )  + 28 [A:] ( ~ ) 6  [A:] (2) 

e [E] e [:A] (2) = 26 [:A] ( ~ ) 8  [::I ( z )  - 28 [A:] (%)e^ [:A] (z) 
e [A;] e [A:] (2) = 26 [A:] (116 E:] (2) + 26 E;] (2); [A;] (2) 

e [E] e [A?] (.z) = 26 [A:] (216 [::I (2) - 2e  ̂E:] (216 [;A] (2) 

e [A:] e [:;I (2) = 26 [:PI e4 [:;I (2) + 26 [A;] ~6 [:?I (2) 

0 [;;I e [;AI (2) = 24 [A?] (.2-)6 [::I (2) - 26 [A;] wê [::I (2) 

8 [:A] e [:;I (2) = 26 [:;I (4 [::I (2) +26 [A:] (z@ [;;I (2) 

e [E] e [?;I (2) = 26 E;] (216 [g] (2) 4 6  [A!] ( ~ 1 6  [:I] (2) 

e [A:] e [::I (2) = 26 E:] ( ~ ) 6  [;:I (2) + 26 [;A] wê  [?A] (2) 

e [A;] e [;:I (2) = 26 [::I ~6 [::I (2) - 26 [:A] (216 [E] (2) 

/j [ O q e  [“’I - @- 00 ê  01 

-2 -00 -2 11 ‘2 10 -2 01 

e [A:] e k  [A:] =~26 [::I 6 k  [:)I f 26 [h;] 6k E!] 
11 -26 10 6 [ol]-2e^[oo]6 [ l l ]  

e [ t ~ ] e k [ i o l  - [oil  K 01 01 k 01 

00 k 01 - [ O l l  k to11 +28[A?16k [A;] 
8 [:A] Ok E;] = 26 [:p] 6 k  I:;] - 26 [Ay] 6 k  [At] 

01 e  ̂ I 1  e [A:] ek [;;I = 26 [?:I $k [I:] + 26 [io] k [IO] 

@[g]ek[ : ? ]  = 2 6 [ ? : ] 6 k [ [ 1 : ] - 2 8 ^ [ ? : ] 8 k [ ; ; ] .  

8.3. Theta constants of 2”-sheeted coverings over a torus 

In this subsection we denote the Jacobi theta constants by Oj = 19j (0I2’’ql), I9j = 
Oj (012pr~), j = 2,3,4. 
p = 1. Let r = (‘;iZ). Then 

- 

0 [A:] = 0 [ A y ]  = (2fi2$3$3;4)”2 6 [?A] = 8 E;] = (2$3fi4g2;3)1’2 
e [AA] = -io [;;I = (219204;&)’/~ 

e [ o o l - (  3 3 2 4+04941(t2) e[111-(3 3 2 4 -  4 2 

@[101-(33  00 - *2;2 - +2;2 2 4  + *z;z 4 2 )  1/2 

el [I;] = -ne [A;] o;, 

el [!$I = -in8 [:A] 19,’ 

el [e;] = in8 [e;] 19; 

00 - 02p+192;2 2-2 1/2 00 - &j2 - *2;2 192;2)1/2 

e g] = (I9$? + e;;: - Up,“;p 
e*[;A]=-bre[;;];; 

02 [:;I = -ne [:;I 5: 
4 [A;] = -in8 [AA] O: 6% [Ai] = -n6 [AA] ;: 

e, [$I = -ne E;] ;: 
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10 - .  
e1 [3 =-ne [AY] 9: 02 [I I ]  - 1x0 [A?] z; 
e1 [f3 = -ne [A;] 9: &[I;] = -i& [A:] S;. - - - 

p = 2. Let r = (rr i2) and denote X = O3e3, Y = Ip2tY4, Z = f1402, A = -X2+ y2+zz, 
B = Xz - Y2 + Z2, C = Xz + Yz - Z2, D = A + B + C. Then the following formulae 
hold 

e [::I = x + Y + z 
e[::]=x-Y+z 

e [;:I = x + Y - z 
e E;] = x  - Y -z 

e2[::] = 23/z(XY)1/2(D'iz + 21/2Z) 

6"[gA] = 23/2(XZ)1/2(D'/2 + 2'l2Y) 
0 2 1001 I '  - - 23/2(Yz)'/2(D'/2 + 21/2X) 

0' [A?] = 23/z(XY)1/2(D'~z - 2'/'Z) 

e2[:A] = 23/z(XZ)1~2(D1/z - 2'/'y) 
e ' [ ; ; ]  = 23/2(YZ)1/2(D1/2 - 21/2X). 

e1 [$I = -n(2XY) 114 ( 9 : ~ 1 / 2  + 21/2,j:~)(D1/2 + 21/2z)-1/2 

82 [it] = -in(2XY)'/4(~~B1/2 +211z~~Z)(D'/2 +21/2zj-1/2 
81 E;] = - ~ ~ ( ~ X Z ) ~ / ~ ( O ; C ' / ~  + z~/~o:Y)(D'/~ + 21/2~)-1/2 

6'1 [Ai] = -~J~(~ZY)~/~(~P:C'/ '  + 21/29,2X)(D1/2 + 21/2X)-L/2 

81 [;A] =~-IT(~ZY) ' /~(~:B' /~ + 21/2942X)(D'/2 + 2'/2X)-1/2 
02 [:A] = -n(2ZY)1/4(g~B1/Z + 21/25~X)(D'/2 + 21/2X)-1/2 

02 [:I] = -n(2XZ)1/4(g:CL/Z + 2'/2$~Y)(D1'2 +2L/2Y)-1/2 

e2 [A;] = -n(zZY)'/4(q:C'/Z + ZqqX)(D'/2 + 21/2x)-'/' 

61 [3 = -in(2xY) I/4 ( O2Al/2 4 - 2'/zi~~Z)(D'/z + 2l/zZ)-'/2 

0 2 [ 3  = - i n ( 2 ~ ~ )  114 ( g 2 A ~  z - ~ V Z ~ ~ : , ~ Z ) ( D L / Z  + 21/2z)-l/2 

81 [::I = n(2XZ)1/4(9$A'/2 - 21/2iO:Y)(D'/z + Z1/zY) - l / z  
02 [Yi] = -in(ZXz) 'I4 ( g2A1/2 4 - 2L/zi@Y)(Dl/z + 2'/2y)-1/2 
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